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Abstract

How can we learn to do probabilistic inference in
a way that generalizes between models? Amor-
tized variational inference learns for a single
model, sharing statistical strength across observa-
tions. This benefits scalability and model learning,
but does not help with generalization to new mod-
els. We propose meta-amortized variational infer-
ence, a framework that amortizes the cost of infer-
ence over a family of generative models. We apply
this approach to deep generative models by intro-
ducing the MetaVAE: a variational autoencoder
that learns to generalize to new distributions and
rapidly solve new unsupervised learning problems
using only a small number of target examples.
Empirically, we validate the approach by show-
ing that the MetaVAE can: (1) capture relevant
sufficient statistics for inference, (2) learn use-
ful representations of data for downstream tasks
such as clustering, and (3) perform meta-density
estimation on unseen synthetic distributions and
out-of-sample Omniglot alphabets.

1. Introduction

A wide variety of problems in modern Al can be posed as
probabilistic inference in generative models. While tra-
ditional inference techniques solve each inference inde-
pendently, amortized inference (Gershman & Goodman,
2014) aims to solve multiple inferences for a given model
together—Ilearning to do inference for that model. This
approach has been particularly fruitful when applied to vari-
ational inference (Jordan et al., 1999; Wainwright et al.,
2008; Blei et al., 2017) where amortization across observa-
tions solves a serious problem with scaling to large data sets
(Rezende et al., 2014; Kingma & Welling, 2013). In this pa-
per we explore amortizing not just over the observations for
a single model, but further amortizing the cost of inference
over different generative models.

More precisely, suppose we have a family of generative
models where for each family member, we would like to
perform scalable inference. Then, we would ideally design
an efficient, amortized inference model that takes as input:
(1) a suitable representation of the target probabilistic model,

(2) an inference query, and (3) observed data, and outputs
an approximation of the desired posterior distribution. We
note that this inference model is not intended to be uni-
versal, but rather tailored to a specific family where each
model is similar in structure. Inspired by meta-learning, we
denote this “doubly-amortized” inference problem as meta-
inference and let a meta-distribution refer to the probability
distribution over the family of probabilistic models.

The challenge is generalization: we wish to draw correct
inferences efficiently on unseen distributions that are either
sampled from the meta-distribution or “close” to it. This
challenge is especially pertinent for latent variable models
such as the variational autoencoder (VAE), where the amor-
tized inference network is used to map data points to latent
representations. In this work, we introduce the MetaVAE, a
VAE that meta-amortizes the inference procedure across a
family of generative models. We use the MetaVAE to per-
form: (1) meta-unsupervised learning, where we leverage
the underlying meta-distribution to find good representa-
tions on previously unseen distributions for downstream
tasks; and (2) meta-density estimation, where we can prop-
erly estimate the marginal distribution with very few data
points from an unseen target distribution.

2. Preliminaries
2.1. Exact and Approximate Inference

Let pgatq(Xx) be an (empirical) data distribution over the
observed variables x € X'. In practice, this is often uniform
over a training set D of examples from X'. We then define
p(x, z) to be a joint distribution over a set of latent variables
z € Z and observed variables x € X.

A typical inference query involves computing our posterior
beliefs after incorporating evidence into the prior: p(z|x) =
p(x,2z)/p(x). This quantity is often intractable to compute,
as the marginal likelihood p(x) = [ p(x,z)dz requires
integrating/summing over a potentially exponential number
of configurations for z.

Instead, we leverage approximate inference techniques such
as Markov Chain Monte Carlo (MCMC) sampling (Hastings
(1970), Gelfand & Smith (1990)) and variational inference
(VD) (Jordan et al. (1999), Wainwright et al. (2008), Blei
et al. (2017)) to estimate p(z|x). In VI, we posit a family
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of tractable distributions Q parameterized by ¢ over the
latent variables and find the member (called the approximate
posterior) g, € Q that minimizes the Kullback-Leibler
(KL) divergence between itself and the exact posterior:

q¢ (z) = arg min Drcr(q4(2)|p(2]x))

This g4 (z) then serves as a proxy for the true underlying
posterior distribution. We note that the solution will depend
on the specific value of the observed (evidence) variables X
we are conditioning on. For notational clarity, we rewrite
the variational parameters as ¢ to make explicit their de-
pendence on X. As noted earlier, one often needs to solve
multiple inference queries of the same kind, conditioning on
different values of the observed (evidence) variables X. The
average quality of the variational approximations obtained
can be quantified as follows:

p(x,2)

= 46, (2)
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2.2. Amortized Variational Inference

Massively large training sets D require yet another layer
of efficiency, as the computational cost of VI in Eq. 1
scales linearly with the number of data points |D|. We thus
leverage a technique known as amortization, in which we
amortize the computational cost of the inference procedure
by casting the per-sample optimization process in Eq. 1 as a
supervised regression task. Specifically, rather than solving
for an optimal ¢, (z) for every data point x, we learn one
deterministic mapping fy : X — Q to predict g4 (z) as a
function of X. Often, we choose to concisely represent f, as
a conditional distribution, denoted by g, (z|x) = f4(x)(2).

This procedure introduces an amortization gap, in which
the less flexible parameterization of the inference network
results in replacing the original objective as shown in Eqn. 1
with the following lower bound:

p(x,2)
q4(2|x)

2
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This gap refers to the suboptimality caused by amortizing
the variational parameters over the entire training set, as
opposed to optimizing for each training example individ-
ually (pulling the max out of the expectation in Eq. 2).
This tradeoff in expressiveness, however, enables significant
computational speedups and generalization to new values
of the observed variables.

2.3. Latent Variable Models

Of particular importance to latent variable modeling is the
variational autoencoder (VAE), a generative model trained

to maximize the log marginal likelihood of the data:

e [1080(0)] = Ex . |05 | 0 (xla)p(a)ia
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as a function of a set of trainable parameters 6.

As an optimization objective, Eqn. 3 is intractable. Instead,
we can derive the Evidence Lower Bound (ELBO) to Eqn. 3
using ¢, (z|x) as a tractable amortized inference model:

po(x,2)
E"L' ata log plr 2 E"L ata |:E zjx |:10g :l :l
Pa [ ( )} Pa q (zjx) q¢(z|x)

With Eqn. 4 as an objective, we can train the VAE by jointly
optimizing ¢, . Post-optimization, the latent variables z
are learned features inferred by g, (z|x) that can be used in
generic unsupervised learning tasks (e.g. clustering).

We may also derive an alternative formulation of the ELBO
where denoting ¢4(x, z) = f5(x)(2)pdaa(x) We get:

L(6,0) = —=Dri(ap(x,2)[po(x,2)) 5
= — Dk (paata (%) [P0 (x))
— Ex pun[Di(g9(2%)[[po(2[x))] - (6)

Eqn. 6 comprises a maximum likelihood term with a reg-
ularization penalty that encourages the learned model to
have posteriors that can be approximated by the amortized
inference model (Shu et al., 2018).

3. Meta-Amortized Variational Inference

Recall a (singly)-amortized inference model for p(X, z)

(2)p(x|2)

D
max E ) |Ef (x) log ————
o X pdata(x) |Ef (x) 108 fs(x)

which attempts to approximate p(z|x) for various choices
of X ~ Dgarq- This is the original setting where we con-
sider repeated inference queries from the same model but
evaluated on many values of the observed variables x.

Now imagine that we are interested in not one but a set of
models, 7y = {pe,(X,2),i € I} = {p(z)pe;(X|2),i €
T} . We assume that the random variables in these models
have the same domains (X, Z), but the relationships be-
tween the random variables may be different. Further, we
make the key simplifying assumption that for each model,
we care about the same query pg(z|x). Finally, we assume
to have some knowledge of typical values of the observed
variables for each model in 7;. Formally, we assume to
have a set My = {p;(x),7 € Z} C M of marginal distri-
butions over the observed variables, e.g., a set of data dis-
tributions. Here M denotes the set of all possible marginal
distributions over X. Let pp : My — [0, 1] denote a dis-
tribution over My . For example, ppg may be uniform over
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a finite number of training datasets. As pj is a distribution
over distributions, we refer to it as a meta-distribution.

The standard approach to amortize over a set of models is:

Po; (X, Z)]
E,, max By, x) |Ef (x)log —F—— 7
pi pv S p()[f() f(x)
where we separately fit an amortized inference model for
each py, (x,z). However, we propose to doubly-amortize
the inference procedure as follows:

Po; (Xa z)

8
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where the original mapping f,(x) is replaced by an amor-
tized mapping g4 (p;, x) that takes the marginal distribution
p;(x) and an observation X to return a posterior. Formally,
we call such a mapping, g, : M x X — Q, a meta-
inference model. Given a single inference query, this doubly-
amortized inference component must be robust across vary-
ing marginals and evidence. The hope is that g4 will gen-
eralize over M, and possibly to a larger set of sufficiently
similar, but previously unseen models.

3.1. Meta-Amortized Variational Learning

Obtaining such a set Jy = {py, (z, 2),¢ € Z} of similarly
related generative models is difficult. However, just as amor-
tized variational inference works particularly well when
learning the parameters of the generative model jointly with
those of the amortized inference model, we can “meta-learn”
a set of generative models jointly with a single doubly-
amortized inference model.

To meta-learn a VAE, we can jointly optimize the parameters
of the meta-inference network ¢ and the parameters of each
generative network 6;, ¢ € Z according to this objective:

HldE)%X Epi pm {Ineax Ly,0; (pZ)] 9
where

Ls,0,(pi) = —Dr1(pi(x)90(2|pi, x)|[p(2)pe; (x|2))
(10)
and p;(x)ge(z|p;,x) denotes the distribution defined im-
plicitly by x ~ p;(x) and z ~ g4(z|p;, x). We denote this
lower bound as the MetaELBO, and refer to the VAE with
meta-inference as the MetaVAE.

We can rewrite the MetaELBO to a more interpretable form,
as in Eqn. 6. Similar to f, our doubly-amortized mapping
g can be represented as a conditional distribution, denoted

q4(z|x,pi) = gy (pi, x)(z). Then,
Lg0(pi,x) = —Dkr(pi(x)qe(z|x, pi)||p(2)pe; (x|2))
= — Dk (pi(x)||pe; (x))
— Ex i [Dke(gs(2[x, pi)|po; (z]%))]

As in (Shu et al., 2018), this MetaELBO has a maximum
likelihood term and a regularization term but for each dis-
tribution p;(x), thereby encouraging the meta-amortized
inference model to perform well across distributions p; sam-
pled from the meta-distribution ppg.

Finally, we state a property of the MetaBLBO: if |M| = 1
and p1 € M = pga,, then the MetaELBO decomposes to
the standard ELBO and g4(p;, X) = f4(x).

3.2. Representing the Meta-Inference Model

In Eqn. 10, if we parameterize g4 (p;,x) as a neural network,
it is not clear how to represent a distribution, p;(x) as input.
One of the main insights from this work is to “discretize” the
marginal distribution as a finite set of samples, D; = {xj €
pi(x)|j = 1,..., N}, or a dataset. We can use a dataset, D;
as a surrogate for p; and define an “empirical” analogue to
9s(pi, x), denoted as g, : XV x X — Q, which maps a
dataset with NV samples and an observation to a posterior.
Then, there is an equivalent analogue of Eqn. 10 where a
marginal, p;(x) is replaced by a dataset, D;.

In practice, for some dataset D and x € X, we
set Go(D,x) = r4,(CONCAT(z, hy, (D)) where ¢ =
{é1, 2}, h(-) is a recurrent neural network (RNN) over
an arbitrary ordering of the elements in D, and r(-) is a two
layer multilayer perceptron (MLP). Each generative model
po, (X,2), 1 € T is also parameterized by a MLP with iden-
tical architecture as r(-). We refer to h(-) as the summary
network and to r(-) as the aggregation network.

3.3. Fully Bayesian VAE

The proposed MetaVAE has an interesting relationship to
a fully Bayesian VAE where one would explicitly model a
posterior distribution over parameters. More precisely, this
involves the factorization of the joint:

p(x,2,0) = p(x|z,0)p(2)p(0) (11)

where p(0) is a prior distribution over the parameters. Then,
the appropriate inference network would be g, (z|x, 0) i.e.
an inference model amortized over a family of generative
models {p(x,z,0),0 € ©}. If O is a discrete set, then the
fully Bayesian VAE is analogous to a MetaVAE.

In practice, the fully Bayesian VAE is difficult to train be-
cause Bayesian neural networks are extremely sensitive to
hyperparameter choices and initializations. By discretizing
O to a finite set, we make the optimization problem easier.

3.4. Instantiations of the MetaVAE

The meta-amortized inference procedure is flexible, mean-
ing that it can be instantiated in a variety of ways depending
on the probabilistic task. Here we describe two particular
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a family generative models. To the best of our knowledge,
this is a novel contribution.

5. Experimental Results

@) (b) © First, we probe the characteristics and generalization abil-

ity of the meta-inference model in two synthetic settings,
and then we demonstrate its applicability to meta-density
efearning using OMNIGLOT.

Figure 1.Plate diagrams for (a) VAE, (b) MetaVAE where an ob-
servation is a data point, (c) MetaVAE where an observation is
datasetD = fx;g. LetN be the number of observations.

instantiations that are used in our experiments. The rst
setup (shown in Fig. 1b) is as described in Sec. 3: there
exists a meta-inference model(D;; x) that takes as input

an observation and a dataset. Unless otherwise stated, we

default to this instantiation. Figure 2.Let p1;:;;ps 2 pw be distributions used in meta-

An alternative setup (Fig. 1c) imposes an additional layef$3Ming- Weak generalization refersig, pr; strong general-
of abstraction: a single observation is now a datas@ 221N refers (s, po, pro-

XN = fxy;u5xng  pi. The meta-inference model is
0 (fD;g; D) wheref D;gis a sequence of datasets whose
elements from drawn frorp;. Thisg requires a second
RNN that ingests a dataset, and returns a single hiddelm this experiment, the set of marginald,, is composed
vector. After applying the RNNs, the resulting hidden vectorof two-dimensional distributions (e.g., Gaussian) with pa-

5.1. 2D Gaussian Datasets

y = RNN(D) and sequence of hidden vectdngig = rameters (e.g., mean and variance) that vary within a xed

RNN(D;); D; 2 f D;jgare analogous to Fig. 1b, where we range[; ]. We amortize over 30 sampled marginals and

treat a hidden vector as an observed variable. consequently, optimize 30 generative models. The meta-
distribution is uniform oveM . Critically, each generative

4. Related work model,p ; (Xjz) is parameter-free ( = ;), thereby encour-

aging the latent variable to capture the suf cient statis-
There exists a rich body of work on meta-learning, particutics of the true distributiorp; (x). Each generative model
larly in the supervised learning setting with the goal of rapidp , (x; z) is also given the correct distribution family that
adaptation to unseen classi cation tasks (Ravi & Larochellep; (x) belongs to. However, the meta-inference magleis
(2016), Santoro et al. (2016), Vinyals et al. (2016), Snellnot given any prior knowledge; it is tasked with matching
et al. (2017)). A popular line of work formulates proper marginals with the correct families. As suf cient statistics
initialization as the workhorse of successful meta-learningpnly make sense across a set of observations, we use the
such as (Finn et al. (2017), Grant et al. (2018), Yoon et asecond setup of the MetaVAE (Fig. 1c). The measure of
(2018)). In many ways, our meta-amortized inference prosuccess is then how close we can infer the suf cient statis-
cedure can be thought of as learning a good initialization otics with no additional training (zero shot) for (1) unseen
for an inference model on a new target distribution. distributions fromM and (2) unseen distributions outside
of M . We refer to (1) asveak generalizatiomnd (2) as

Meta-learning for unsupervised tasks has also been explore o
strong generalizationWe rst explore a members of the

by (Metz et al. (2018)), who learn the weight updates for . . . :
X . ; exponential family one-at-a-time, then proceed to multiple
good representation learning. Several lines of work have

tackled the problem of few-shot density estimation, with fembers of the exponential family at the same time.
approaches ranging from attention mechanisms (Rezendgaussian Marginals In this setting, each distribution
et al. (2016)), memory-augmented models (Bornscheinetay 2 py is Gaussian with a xed spherical covariance
(2017)), weight-updates for conditional generative model®of 0.1 and a mean uniformly sampled frdd{ 5;5) i.e.
(Reed et al. (2017)), and hierarchical models (Edwards & = 5, = 5. The summary network and aggrega-
Storkey (2016), Hewitt et al. (2018)). Our architecturetion network have 64 hidden dimensions for all layers. To
shares similarities to both the Neural Statistician (Edwardsneasure weak generalization, we sample new means from
& Storkey (2016)) and the Variational Homoencoder (Hewitt U( 5; 5) that are previously unseen. For strong general-
et al. (2018)): we also derive salient features of each dataséation, we sample means frobh( 20; 20). We nd that
with a summary network. Our model's distinguishing factor,the MetaVAE is successfully able to learn the means (the
then, is on doubly amortizing the inference procedure oveonly suf cient statistic) of the underlying Gaussians. Inter-
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(a) Log Normal (Weak) (b) Exponential (Weak)

(a) Gaussian (Weak) (b) Gaussian (Strong)

(c) Log Normal Spectrum (d) Exponential Spectrum

Figure 4.(a) Comparison of samples from the an unseen distribu-
tionpi 2 pm (red) and samples the log normal distribution de ned
by the inferred suf cient statistic (blue). (b) Similar visualization
for exponential distributions as in (a). (c) and (d) show the mean
squared error between the true suf cient statistic and the inferred
one (mean for log Normal, rate for exponential). The orange line
(c) Generalizability Spectrum is a non-amortized VAE trained on a single randomly chosen dis-
tribution [ 0:5; 1:8] for log Normal;[1:4; 2:8] for exponential).

Figure 3.Colored circles represent 30 differqmt pwm ; black
dots represent the inferred means from the meta-inference model.
(a) New distributions sampled from, ; (b) New distributions  ization as done previously. But, we also measure an even
sampled from outside g . (c) plots the mean squared error stronger notion of generalization: can we do inference for
between the true mean and the inferred mean as the true megmseen members of the exponential family?
of pi tiles[ 10;10]. The green region shows the span of the
meta-distribution. The orange line shows a singly-amortized VAEFig. 5 compares the performance of our 90 distribution amor-
trained on a single; with mean[ 1:2; 1:1] (randomly chosen).  tized MetaVAE to three different MetaVAEs, each of which
is amortized over 30 distributions from a single exponential
family. Fig. 5(a-c) show examples of weak generalization.

i o As expected, the best performing model is the MetaVAE
estingly, in Fig. 3a, as you move closer to the boundary of, o rtized on distributions only from that family. However,

the meta-dist_ribution, the infer_ence quality decr_ea_ses (S&®e 90-amortized MetaVAE only performs slightly worse,
purple Gaussian negs; 5)). In Fig. 3, we can convincingly - peating the remaining two models dramatically. Fig. 5(d-f)
see that the meta-inference model is almost bounded withigpq,y results for 2D distributions over (1) Weibull distribu-
the [5,5] square centered at the origin. Finally, from Fig. 3Cons with a xed scale of 1, (2) Laplace distributions with
we see that doubly-amortizing increases the inference qual- v |ocation of 0, and (3) Beta distributions with equal
ity dramatically over a singly-amortized model, even for gy ahe parameters. Critically, none of these distributions lie
distributions far frompy . inpy . We nd that the 90-amortized MetaVAE consistently
Log Normal and Exponential Marginals Similar to the ~ outperforms any of the legioned baselines. This suggests
above setting, we sample 30 log Normal distributions with athat doing inference over the exponential families together
xed spherical covariance of 0.1 and means frort 2;2).  enables the model to learn more robust representations.
For strong generalization, we sample frahg 4;4). We

also study the exponential distribution by choosingg3%)  5.2. 2D Mixtures of Gaussians

with a rate sampled fro(0;3)i,e. =0, =3.To

measure strong generalization, we sample ftia: 5). Next, we test the MetaVAE's ability to perform clustering

and density estimation. A distributign 2 py is a mix-
Many Exponential Families The natural next step is to ture of Gaussians, where each component is a Gaussian
amortize over many types of exponential families. We samwith xed isotropic covariance > = 0:1, and the means

ple 30 Gaussian, 30 log Normal, and 30 exponential (withare drawn fromJ( 5;5). The two Gaussians are mixed
same meta-distributions as above) and train a single metagually:p; = %N ( 1;0:1)+ %N ( 2;0:1). We assign each
inference model. We measure weak and strong generahixture component a label of 0 or 1. We then amortize






