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Abstract
How can we learn to do probabilistic inference in
a way that generalizes between models? Amor-
tized variational inference learns for a single
model, sharing statistical strength across observa-
tions. This benefits scalability and model learning,
but does not help with generalization to new mod-
els. We propose meta-amortized variational infer-
ence, a framework that amortizes the cost of infer-
ence over a family of generative models. We apply
this approach to deep generative models by intro-
ducing the MetaVAE: a variational autoencoder
that learns to generalize to new distributions and
rapidly solve new unsupervised learning problems
using only a small number of target examples.
Empirically, we validate the approach by show-
ing that the MetaVAE can: (1) capture relevant
sufficient statistics for inference, (2) learn use-
ful representations of data for downstream tasks
such as clustering, and (3) perform meta-density
estimation on unseen synthetic distributions and
out-of-sample Omniglot alphabets.

1. Introduction
A wide variety of problems in modern AI can be posed as
probabilistic inference in generative models. While tra-
ditional inference techniques solve each inference inde-
pendently, amortized inference (Gershman & Goodman,
2014) aims to solve multiple inferences for a given model
together—learning to do inference for that model. This
approach has been particularly fruitful when applied to vari-
ational inference (Jordan et al., 1999; Wainwright et al.,
2008; Blei et al., 2017) where amortization across observa-
tions solves a serious problem with scaling to large data sets
(Rezende et al., 2014; Kingma & Welling, 2013). In this pa-
per we explore amortizing not just over the observations for
a single model, but further amortizing the cost of inference
over different generative models.

More precisely, suppose we have a family of generative
models where for each family member, we would like to
perform scalable inference. Then, we would ideally design
an efficient, amortized inference model that takes as input:
(1) a suitable representation of the target probabilistic model,

(2) an inference query, and (3) observed data, and outputs
an approximation of the desired posterior distribution. We
note that this inference model is not intended to be uni-
versal, but rather tailored to a specific family where each
model is similar in structure. Inspired by meta-learning, we
denote this “doubly-amortized” inference problem as meta-
inference and let a meta-distribution refer to the probability
distribution over the family of probabilistic models.

The challenge is generalization: we wish to draw correct
inferences efficiently on unseen distributions that are either
sampled from the meta-distribution or “close” to it. This
challenge is especially pertinent for latent variable models
such as the variational autoencoder (VAE), where the amor-
tized inference network is used to map data points to latent
representations. In this work, we introduce the MetaVAE, a
VAE that meta-amortizes the inference procedure across a
family of generative models. We use the MetaVAE to per-
form: (1) meta-unsupervised learning, where we leverage
the underlying meta-distribution to find good representa-
tions on previously unseen distributions for downstream
tasks; and (2) meta-density estimation, where we can prop-
erly estimate the marginal distribution with very few data
points from an unseen target distribution.

2. Preliminaries
2.1. Exact and Approximate Inference

Let pdata(x) be an (empirical) data distribution over the
observed variables x ∈ X . In practice, this is often uniform
over a training set D of examples from X . We then define
p(x, z) to be a joint distribution over a set of latent variables
z ∈ Z and observed variables x ∈ X .

A typical inference query involves computing our posterior
beliefs after incorporating evidence into the prior: p(z|x) =
p(x, z)/p(x). This quantity is often intractable to compute,
as the marginal likelihood p(x) =

∫
z
p(x, z)dz requires

integrating/summing over a potentially exponential number
of configurations for z.

Instead, we leverage approximate inference techniques such
as Markov Chain Monte Carlo (MCMC) sampling (Hastings
(1970), Gelfand & Smith (1990)) and variational inference
(VI) (Jordan et al. (1999), Wainwright et al. (2008), Blei
et al. (2017)) to estimate p(z|x). In VI, we posit a family
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of tractable distributions Q parameterized by φ over the
latent variables and find the member (called the approximate
posterior) qφ� ∈ Q that minimizes the Kullback-Leibler
(KL) divergence between itself and the exact posterior:

qφ�(z) = arg min
q�

DKL(qφ(z)||p(z|x))

This qφ�(z) then serves as a proxy for the true underlying
posterior distribution. We note that the solution will depend
on the specific value of the observed (evidence) variables x
we are conditioning on. For notational clarity, we rewrite
the variational parameters as φx to make explicit their de-
pendence on x. As noted earlier, one often needs to solve
multiple inference queries of the same kind, conditioning on
different values of the observed (evidence) variables x. The
average quality of the variational approximations obtained
can be quantified as follows:

Ex�pdata(x)

[
max
fφxg

Eq�x (z) log
p(x, z)

qφx(z)

]
(1)

2.2. Amortized Variational Inference

Massively large training sets D require yet another layer
of efficiency, as the computational cost of VI in Eq. 1
scales linearly with the number of data points |D|. We thus
leverage a technique known as amortization, in which we
amortize the computational cost of the inference procedure
by casting the per-sample optimization process in Eq. 1 as a
supervised regression task. Specifically, rather than solving
for an optimal q�φx

(z) for every data point x, we learn one
deterministic mapping fφ : X → Q to predict q�φx(z) as a
function of x. Often, we choose to concisely represent fφ as
a conditional distribution, denoted by qφ(z|x) = fφ(x)(z).

This procedure introduces an amortization gap, in which
the less flexible parameterization of the inference network
results in replacing the original objective as shown in Eqn. 1
with the following lower bound:

max
φ

Ex�pdata(x)

[
Eq�(zjx) log

p(x, z)

qφ(z|x)

]
(2)

This gap refers to the suboptimality caused by amortizing
the variational parameters over the entire training set, as
opposed to optimizing for each training example individ-
ually (pulling the max out of the expectation in Eq. 2).
This tradeoff in expressiveness, however, enables significant
computational speedups and generalization to new values
of the observed variables.

2.3. Latent Variable Models

Of particular importance to latent variable modeling is the
variational autoencoder (VAE), a generative model trained

to maximize the log marginal likelihood of the data:

Ex�pdata [log p(x)] = Ex�pdata

[
log

∫
z

pθ(x|z)p(z)dz

]
(3)

as a function of a set of trainable parameters θ.

As an optimization objective, Eqn. 3 is intractable. Instead,
we can derive the Evidence Lower Bound (ELBO) to Eqn. 3
using qφ(z|x) as a tractable amortized inference model:

Ex�pdata [log p(x)] ≥ Ex�pdata

[
Eq�(zjx)

[
log

pθ(x, z)

qφ(z|x)

]]
(4)

With Eqn. 4 as an objective, we can train the VAE by jointly
optimizing φ, θ. Post-optimization, the latent variables z
are learned features inferred by qφ(z|x) that can be used in
generic unsupervised learning tasks (e.g. clustering).

We may also derive an alternative formulation of the ELBO
where denoting qφ(x, z) = fφ(x)(z)pdata(x) we get:

L(φ, θ) = −DKL(qφ(x, z)‖pθ(x, z)) (5)
= −DKL(pdata(x)‖pθ(x))

− Ex�pdata [DKL(qφ(z|x)‖pθ(z|x))] (6)

Eqn. 6 comprises a maximum likelihood term with a reg-
ularization penalty that encourages the learned model to
have posteriors that can be approximated by the amortized
inference model (Shu et al., 2018).

3. Meta-Amortized Variational Inference
Recall a (singly)-amortized inference model for p(x, z)

max
φ

Ex�pdata(x)

[
Ef�(x) log

p(z)p(x|z)

fφ(x)

]
which attempts to approximate p(z|x) for various choices
of x ∼ pdata. This is the original setting where we con-
sider repeated inference queries from the same model but
evaluated on many values of the observed variables x.

Now imagine that we are interested in not one but a set of
models, JI = {pθi(x, z), i ∈ I} = {p(z)pθi(x|z), i ∈
I} . We assume that the random variables in these models
have the same domains (X ,Z), but the relationships be-
tween the random variables may be different. Further, we
make the key simplifying assumption that for each model,
we care about the same query pθ(z|x). Finally, we assume
to have some knowledge of typical values of the observed
variables for each model in JI . Formally, we assume to
have a setMI = {pi(x), i ∈ I} ⊆ M of marginal distri-
butions over the observed variables, e.g., a set of data dis-
tributions. HereM denotes the set of all possible marginal
distributions over X . Let pM :MI → [0, 1] denote a dis-
tribution overMI . For example, pM may be uniform over
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a finite number of training datasets. As pM is a distribution
over distributions, we refer to it as a meta-distribution.

The standard approach to amortize over a set of models is:

Epi�pM max
φ

Epi(x)

[
Ef�(x) log

pθi(x, z)

fφ(x)

]
(7)

where we separately fit an amortized inference model for
each pθi(x, z). However, we propose to doubly-amortize
the inference procedure as follows:

max
φ

Epi�pMEpi(x)

[
Eg�(x,pi) log

pθi(x, z)

gφ(pi,x)

]
(8)

where the original mapping fφ(x) is replaced by an amor-
tized mapping gφ(pi,x) that takes the marginal distribution
pi(x) and an observation x to return a posterior. Formally,
we call such a mapping, gφ : M × X → Q, a meta-
inference model. Given a single inference query, this doubly-
amortized inference component must be robust across vary-
ing marginals and evidence. The hope is that gφ will gen-
eralize overM, and possibly to a larger set of sufficiently
similar, but previously unseen models.

3.1. Meta-Amortized Variational Learning

Obtaining such a set JI = {pθi(x, z), i ∈ I} of similarly
related generative models is difficult. However, just as amor-
tized variational inference works particularly well when
learning the parameters of the generative model jointly with
those of the amortized inference model, we can “meta-learn”
a set of generative models jointly with a single doubly-
amortized inference model.

To meta-learn a VAE, we can jointly optimize the parameters
of the meta-inference network φ and the parameters of each
generative network θi, i ∈ I according to this objective:

max
φ

Epi�pM
[
max
θi
Lφ,θi(pi)

]
(9)

where

Lφ,θi(pi) = −DKL(pi(x)gφ(z|pi,x)||p(z)pθi(x|z))
(10)

and pi(x)gφ(z|pi,x) denotes the distribution defined im-
plicitly by x ∼ pi(x) and z ∼ gφ(z|pi,x). We denote this
lower bound as the MetaELBO, and refer to the VAE with
meta-inference as the MetaVAE.

We can rewrite the MetaELBO to a more interpretable form,
as in Eqn. 6. Similar to fφ, our doubly-amortized mapping
gφ can be represented as a conditional distribution, denoted
qφ(z|x, pi) = gφ(pi,x)(z). Then,

Lφ,θ(pi,x) = −DKL(pi(x)qφ(z|x, pi)||p(z)pθi(x|z))

= −DKL(pi(x)||pθi(x))

− Ex�pi [DKL(qφ(z|x, pi)||pθi(z|x))]

As in (Shu et al., 2018), this MetaELBO has a maximum
likelihood term and a regularization term but for each dis-
tribution pi(x), thereby encouraging the meta-amortized
inference model to perform well across distributions pi sam-
pled from the meta-distribution pM.

Finally, we state a property of the MetaELBO: if |M| = 1
and p1 ∈ M = pdata, then the MetaELBO decomposes to
the standard ELBO and gφ(pi,x) = fφ(x).

3.2. Representing the Meta-Inference Model

In Eqn. 10, if we parameterize gφ(pi,x) as a neural network,
it is not clear how to represent a distribution, pi(x) as input.
One of the main insights from this work is to “discretize” the
marginal distribution as a finite set of samples, Di = {xj ∈
pi(x)|j = 1, ..., N}, or a dataset. We can use a dataset, Di

as a surrogate for pi and define an “empirical” analogue to
gφ(pi,x), denoted as ĝφ : XN × X → Q, which maps a
dataset with N samples and an observation to a posterior.
Then, there is an equivalent analogue of Eqn. 10 where a
marginal, pi(x) is replaced by a dataset, Di.

In practice, for some dataset D and x ∈ X , we
set ĝφ(D,x) = rφ2

(CONCAT(x, hφ1
(D)) where φ =

{φ1, φ2}, h(·) is a recurrent neural network (RNN) over
an arbitrary ordering of the elements in D, and r(·) is a two
layer multilayer perceptron (MLP). Each generative model
pθi(x, z), i ∈ I is also parameterized by a MLP with iden-
tical architecture as r(·). We refer to h(·) as the summary
network and to r(·) as the aggregation network.

3.3. Fully Bayesian VAE

The proposed MetaVAE has an interesting relationship to
a fully Bayesian VAE where one would explicitly model a
posterior distribution over parameters. More precisely, this
involves the factorization of the joint:

p(x, z, θ) = p(x|z, θ)p(z)p(θ) (11)

where p(θ) is a prior distribution over the parameters. Then,
the appropriate inference network would be qφ(z|x, θ) i.e.
an inference model amortized over a family of generative
models {p(x, z, θ), θ ∈ Θ}. If Θ is a discrete set, then the
fully Bayesian VAE is analogous to a MetaVAE.

In practice, the fully Bayesian VAE is difficult to train be-
cause Bayesian neural networks are extremely sensitive to
hyperparameter choices and initializations. By discretizing
Θ to a finite set, we make the optimization problem easier.

3.4. Instantiations of the MetaVAE

The meta-amortized inference procedure is flexible, mean-
ing that it can be instantiated in a variety of ways depending
on the probabilistic task. Here we describe two particular
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(a) (b) (c)

Figure 1.Plate diagrams for (a) VAE, (b) MetaVAE where an ob-
servation is a data point, (c) MetaVAE where an observation is a
dataset,D = f x i g. Let N be the number of observations.

instantiations that are used in our experiments. The �rst
setup (shown in Fig. 1b) is as described in Sec. 3: there
exists a meta-inference modelĝ� (D i ; x) that takes as input
an observation and a dataset. Unless otherwise stated, we
default to this instantiation.

An alternative setup (Fig. 1c) imposes an additional layer
of abstraction: a single observation is now a datasetD 2
X N = f x1; :::; xN g � pi . The meta-inference model is
ĝ� (f D i g; D) wheref D i g is a sequence of datasets whose
elements from drawn frompi . This ĝ� requires a second
RNN that ingests a dataset, and returns a single hidden
vector. After applying the RNNs, the resulting hidden vector
y = RNN(D) and sequence of hidden vectorsf y i g =
RNN(D i ); D i 2 f D i g are analogous to Fig. 1b, where we
treat a hidden vector as an observed variable.

4. Related work

There exists a rich body of work on meta-learning, particu-
larly in the supervised learning setting with the goal of rapid
adaptation to unseen classi�cation tasks (Ravi & Larochelle
(2016), Santoro et al. (2016), Vinyals et al. (2016), Snell
et al. (2017)). A popular line of work formulates proper
initialization as the workhorse of successful meta-learning,
such as (Finn et al. (2017), Grant et al. (2018), Yoon et al.
(2018)). In many ways, our meta-amortized inference pro-
cedure can be thought of as learning a good initialization of
for an inference model on a new target distribution.

Meta-learning for unsupervised tasks has also been explored
by (Metz et al. (2018)), who learn the weight updates for
good representation learning. Several lines of work have
tackled the problem of few-shot density estimation, with
approaches ranging from attention mechanisms (Rezende
et al. (2016)), memory-augmented models (Bornschein et al.
(2017)), weight-updates for conditional generative models
(Reed et al. (2017)), and hierarchical models (Edwards &
Storkey (2016), Hewitt et al. (2018)). Our architecture
shares similarities to both the Neural Statistician (Edwards
& Storkey (2016)) and the Variational Homoencoder (Hewitt
et al. (2018)): we also derive salient features of each dataset
with a summary network. Our model's distinguishing factor,
then, is on doubly amortizing the inference procedure over

a family generative models. To the best of our knowledge,
this is a novel contribution.

5. Experimental Results

First, we probe the characteristics and generalization abil-
ity of the meta-inference model in two synthetic settings,
and then we demonstrate its applicability to meta-density
learning using OMNIGLOT.

Figure 2.Let p1 ; :::; p5 2 pM be distributions used in meta-
learning. Weak generalization refers top6 , p7 ; strong general-
ization refers top8 , p9 , p10 .

5.1. 2D Gaussian Datasets

In this experiment, the set of marginals,M , is composed
of two-dimensional distributions (e.g., Gaussian) with pa-
rameters (e.g., mean and variance) that vary within a �xed
range[�; � ]. We amortize over 30 sampled marginals and
consequently, optimize 30 generative models. The meta-
distribution is uniform overM . Critically, each generative
model,p� i (x jz) is parameter-free (� i = ; ), thereby encour-
aging the latent variablez to capture the suf�cient statis-
tics of the true distribution,pi (x). Each generative model
p� i (x ; z) is also given the correct distribution family that
pi (x) belongs to. However, the meta-inference modelg� is
not given any prior knowledge; it is tasked with matching
marginals with the correct families. As suf�cient statistics
only make sense across a set of observations, we use the
second setup of the MetaVAE (Fig. 1c). The measure of
success is then how close we can infer the suf�cient statis-
tics with no additional training (zero shot) for (1) unseen
distributions fromM and (2) unseen distributions outside
of M . We refer to (1) asweak generalizationand (2) as
strong generalization. We �rst explore a members of the
exponential family one-at-a-time, then proceed to multiple
members of the exponential family at the same time.

Gaussian Marginals In this setting, each distribution
pi 2 pM is Gaussian with a �xed spherical covariance
of 0.1 and a mean uniformly sampled fromU(� 5; 5) i.e.
� = � 5, � = 5 . The summary network and aggrega-
tion network have 64 hidden dimensions for all layers. To
measure weak generalization, we sample new means from
U(� 5; 5) that are previously unseen. For strong general-
ization, we sample means fromU(� 20; 20). We �nd that
the MetaVAE is successfully able to learn the means (the
only suf�cient statistic) of the underlying Gaussians. Inter-
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(a) Gaussian (Weak) (b) Gaussian (Strong)

(c) Generalizability Spectrum

Figure 3.Colored circles represent 30 differentpi � pM ; black
dots represent the inferred means from the meta-inference model.
(a) New distributions sampled frompM ; (b) New distributions
sampled from outside ofpM . (c) plots the mean squared error
between the true mean and the inferred mean as the true mean
of pi tiles [� 10; 10]. The green region shows the span of the
meta-distribution. The orange line shows a singly-amortized VAE
trained on a singlepi with mean[� 1:2; 1:1] (randomly chosen).

estingly, in Fig. 3a, as you move closer to the boundary of
the meta-distribution, the inference quality decreases (see
purple Gaussian near(5; 5)). In Fig. 3, we can convincingly
see that the meta-inference model is almost bounded within
the [5,5] square centered at the origin. Finally, from Fig. 3c,
we see that doubly-amortizing increases the inference qual-
ity dramatically over a singly-amortized model, even for
distributions far frompM .

Log Normal and Exponential Marginals Similar to the
above setting, we sample 30 log Normal distributions with a
�xed spherical covariance of 0.1 and means fromU(� 2; 2).
For strong generalization, we sample fromU(� 4; 4). We
also study the exponential distribution by choosing 30pi (x)
with a rate sampled fromU(0; 3) i.e. � = 0 , � = 3 . To
measure strong generalization, we sample fromU(0; 5).

Many Exponential Families The natural next step is to
amortize over many types of exponential families. We sam-
ple 30 Gaussian, 30 log Normal, and 30 exponential (with
same meta-distributions as above) and train a single meta-
inference model. We measure weak and strong general-

(a) Log Normal (Weak) (b) Exponential (Weak)

(c) Log Normal Spectrum (d) Exponential Spectrum

Figure 4.(a) Comparison of samples from the an unseen distribu-
tion pi 2 pM (red) and samples the log normal distribution de�ned
by the inferred suf�cient statistic (blue). (b) Similar visualization
for exponential distributions as in (a). (c) and (d) show the mean
squared error between the true suf�cient statistic and the inferred
one (mean for log Normal, rate for exponential). The orange line
is a non-amortized VAE trained on a single randomly chosen dis-
tribution ([� 0:5; 1:8] for log Normal;[1:4; 2:8] for exponential).

ization as done previously. But, we also measure an even
stronger notion of generalization: can we do inference for
unseen members of the exponential family?

Fig. 5 compares the performance of our 90 distribution amor-
tized MetaVAE to three different MetaVAEs, each of which
is amortized over 30 distributions from a single exponential
family. Fig. 5(a-c) show examples of weak generalization.
As expected, the best performing model is the MetaVAE
amortized on distributions only from that family. However,
the 90-amortized MetaVAE only performs slightly worse,
beating the remaining two models dramatically. Fig. 5(d-f)
show results for 2D distributions over (1) Weibull distribu-
tions with a �xed scale of 1, (2) Laplace distributions with
a �xed location of 0, and (3) Beta distributions with equal
shape parameters. Critically, none of these distributions lie
in pM . We �nd that the 90-amortized MetaVAE consistently
outperforms any of the legioned baselines. This suggests
that doing inference over the exponential families together
enables the model to learn more robust representations.

5.2. 2D Mixtures of Gaussians

Next, we test the MetaVAE's ability to perform clustering
and density estimation. A distributionpi 2 pM is a mix-
ture of Gaussians, where each component is a Gaussian
with �xed isotropic covariance� 2 = 0 :1, and the means
are drawn fromU(� 5; 5). The two Gaussians are mixed
equally:pi = 1

2 N (� 1; 0:1)+ 1
2 N (� 2; 0:1). We assign each

mixture component a label of 0 or 1. We then amortize




